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Abstract: This study assessed the prediction performance of seven satellite precipitation products using the 3-hourly gauge data in 

2014-2016 across Thailand, as the representative country in Upper Southeast Asia. They are Tropical Rainfall Measuring Mission near-

real-time (TRMM_RT), gauge-adjusted TRMM (TRMM), Climate Prediction Center Morphing (CMORPH), Global Precipitation 

Measurement (GPM), Global Satellite Mapping of Precipitation - Standard (GSMaP_S), gauge-adjusted GSMaP (GSMaP_G), and 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN). The evaluation methods 

include bias, error, and correlation, event detection, phase of diurnality, variance partitioning, and wavelet coherence. No single product 

is universally superior over all aspects. Nevertheless, it is possible to suggest CMORPH as the best performing based on the majority 

of the methods. GPM and GSMaP_S also perform reasonably, except for incompatibility in the diurnality phase. These three products 

capture precipitation fluctuations to some extent, as robustly indicated by variance partitioning and wavelet coherence. GSMaP_G has 

the true strength in bias, error, and correlation but fails to capture the fluctuations. GSMaP_G and GPM detect the “light” class of 

precipitation event the best but only GPM continues to predict relatively well for the “moderate” and “heavy” classes. TRMM_RT 

appears to have relatively large bias and error and does not reasonably capture the fluctuations. PERSIANN has relatively large error 

and does not perform well for correlation and event detection.  
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1. Introduction 

 

Direct precipitation measurement by conventional 

gauges is not only simple but generally considered standard for 

reference use. For certain remote areas or areas with diverse 

topography, complex climate patterns [33, 41, 47], gauges may not 

be available or only sparsely distributed, posing difficulty in knowing 

precipitation intensity and other related characteristics. 

Alternative methods, such as ground-based radar and satellite 

remote sensing, are helpful and applicable to such case. It is 

nonetheless important to understand the accuracy and uncertainty 

in their precipitation estimates, which are normally evaluated by 

comparing against gauge measurement. The ground-based radar, 

if available, provides information of precipitation and its 

propagation at relatively high spatial and temporal resolutions but 

its estimates are subject to various sources of error such as 

instrument, degraded signal, atmospheric conditions, and ground 

clutter [3] but may be limited in area coverage. For the satellite 

precipitation estimates, derived from space-based remotely sensed 

data and specialized algorithms, they have received much interest 

from both research and operational communities and are 

becoming advanced with time. A recent review by Kidd and 

Huffman (2011) [29] provides a historical background and 

technical perspectives of satellite-derived precipitation 

measurement. Several satellite precipitation products (SPPs) are 

currently produced at sub-daily and spatially fine (e.g., 0.25° or 

smaller) resolutions, with (quasi-)global coverage. Bias and error 

in such data intrinsically exist and depend on several factors, e.g., 

the hydro-climatic background of a region of interest [4, 37, 39], 

sensor type [23, 41], and algorithms/assumptions used in the 

estimation process [42]. The importance of sub-daily 

precipitation is generally associated with short-term weather 

impacts and public risks (e.g., flash floods, landslides, and 

transportation accidents) as well as its influence on how people 

plan and manage their outdoor activities (e.g., travelling, 

recreation, and business) [5]. Sub-daily precipitation also 

modulates atmospheric variables at a diurnal scale [48] (e.g., 

temperature, humidity, visibility, and air pollution) and is also an 

essential input to hydrological modeling [50]. Precipitation 

studies at a sub-daily scale are often constrained or limited due to 

lack of accessibility or availability of sub-daily data (particularly, 

gauge data) [54], which can alternatively be supported by SPPs 

[1, 18]. SPPs become indispensable in case of no or limited gauge 

installations. Guo et al. [18] showed fair agreement of a sub-daily 

SPP with gauges over Tibet and found it to be topographically 

dependent. Pribadi et al. (2012) [38] and Limsakul et al. (2014) 

[31] applied such satellite data to examine the diurnal variation 

of precipitation in the Indonesian Maritime Continent and 

Thailand, respectively.  

Given SPP assessment, a relatively large number of studies 

focus on daily and monthly scales, such as Southern China [53], 

the Upper Mekong River Basin [6, 20], the Chinese mainland 

[39], and Malaysia [47]. In Thailand, Chokngamwong and Chiu 

(2008) [7] evaluated two daily Tropical Rainfall Measuring 

Mission (TRMM) data (version 5 and gauge-adjusted version 6) 

[23-24]. Janjai et al. (2015) [26] examined monthly estimates 

from the TRMM, the Climate Prediction Center (CPC) Morphing 

(CMORPH) [27], and a geostationary satellite, and reported superior 

performance in the first and the third. Sub-daily evaluations have 

received less attention, and some early studies are Dai et al. 

(2007) [10] and Shen et al. (2010) [43] for example. To our 

knowledge, no dedicated assessment on sub-daily SPPs has been 

conducted for the region of Upper Southeast Asia (or called the 

Lower Mekong River region or Indochinese Peninsula), which 
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has formed a motivational basis of this study. Here, we aim to 

assess the prediction performance of seven gridded sub-daily 

SPPs with gauge data in Thailand, a tropical country situated in 

the center of the region, by incorporating a number of 

conventional and non-conventional methods to describe their 

predictability of precipitation estimates, which include seasonal 

bias and error, precipitation event detection, phase of diurnality, 

variance partitioning using spectral decomposition, and wavelet 

coherence. 

 

2. Study Area 

  

Thailand, like most parts of Upper Southeast Asia, has a 

tropical climate and diverse topography. The two prevailing 

monsoons (southwest and northeast) mainly influence its climate 

[12, 49]. The southwest monsoon carries warm moist air from the 

Indian Ocean, bringing about precipitation for the most part of 

the country (i.e., the wet season). The wet season spans about 

May-October. The Gulf of Thailand contributes additional 

moisture along the passage of the monsoonal winds. The 

intertropical convergence zone (ITCZ) impacts precipitation at a 

sub-seasonal scale [35]. Tropical cyclones that develop in the 

North Indian and Western Pacific Ocean Basins also play a 

modulating role in precipitation intensity [12]. The northeast 

monsoon spans about November-February, bringing cool dry air 

from the mid-latitudes (i.e., the winter) to Upper Thailand. When 

the northeasterly winds pass over the Gulf of Thailand, moisture 

can be absorbed into air masses and intensifies precipitation along 

the eastern side of peninsular Lower (i.e., Southern) Thailand. 

March-April marks the warmest time of the year (i.e., the summer), 

during which the northeast monsoon weakens greatly [44]. In the 

following, the wet and dry seasons defined correspond to the months 

May-October and November-April, respectively. Climatologically, 

the wet season contributes as much as 80% of annual precipitation 

over the entire Thailand [49]. Such seasonal contrast in precipitation 

amount is also revealed by GAUGE, as seen in Figure 1b. 

 

3. Data and Methods 

 

3.1 SPPs 

The first two SPPs (out of seven) considered are TRMM 

version 7, produced by the National Aeronautics and Space 

Administration (NASA) and the Japan Aerospace Exploration 

Agency (JAXA) (available at ftp://trmmopen.gsfc.nasa.gov): TRMM 

near-real-time 3B42RT (shortly, TRMM_RT) and TRMM post-

real-time 3B42 (shortly, TRMM), both of which provide 

relatively long-term data (since 1 January 1998) with 0.25° and 

3-hourly resolutions. These products were combined from multi 

precipitation estimates from microwave (MW) and infrared (IR) 

sensors from various satellites [23-24]. It is noted that the TRMM 

(3B42) product is generated from TRMM_RT (3B42RT) merged 

with monthly gauge data. 

The third SPP is CMORPH, produced by the National 

Oceanic and Atmospheric Administration (NOAA) and the CPC 

[27]. CMORPH has a long-term data archive, starting from 1 

January 1998. Precipitation estimation makes use of a morphing 

technique, by which MW estimates together with their features are 

spatially propagated and interpolated using motion vectors given 

by IR data. Gauge and ground-based radar data over the United 

State and gauge data in Australia were used to calibrate final 

estimates. CMORPH offers various datasets with different grid 

and temporal resolutions, and the specific product adopted here 

is of version 1, with 0.25° and 3-hourly resolutions (available at 

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/RAW/0.25d

eg-3HLY). 

The fourth SPP is Global Precipitation Measurement (GPM) 

version 6, developed by the NASA and the JAXA [21, 25, 45]. 

The GPM mission is a direct successor to the TRMM mission and 

makes use of a constellation of satellites, with the GPM Core 

Observatory being the core satellite of the GPM constellation and 

having two major sensors (GPM Microwave Imager or GMI and 

Dual-frequency Precipitation Radar or DPR) on board. Among 

several levels of data products, the gridded level-3 of the 

Integrated Multi-Satellite Retrievals for GPM (IMERG) products 

are commonly used by researchers and operational workers. 

Specifically, the GPM product considered in this study is the 

“Final Run” product, which has 0.1° and half-hourly resolutions. 

IMERG, as the unified algorithm, combines data from all 

passive-microwave instruments in the constellation to produce 

precipitation estimates. It is noted that the product used here has 

been adjusted to the monthly Global Precipitation Climatology 

Project (GPCP) Satellite-Gauge product over high-latitude ocean 

and tropical land and to the seasonal GPCP Satellite-Gauge surface 

precipitation data to correct known biases. The availability of the 

used GPM product begins from June 2000 (available at 

ftp://jsimpson.pps.eosdis.nasa.gov/NRTPUB/imerg/late). 

The next two SPPs are Global Satellite Mapping of 

Precipitation (GSMaP) version 6 [17, 32, 52] (available at 

ftp://rainmap@hokusai.eorc.jaxa.jp/reanalysis/v6). GSMaP is a 

scientific project initialized by the Japan Science and Technology 

Agency and later supported by the JAXA Precipitation Measuring 

Mission (PMM) Science Team. Three main products are 

available: standard (GSMaP_S), gauge-adjusted (GSMaP_G), and 

near-real-time (GSMaP_NRT). The precipitation estimation is 

based on combing MW, IR, and DPR data from various sensors, 

using two main algorithms (microwave radiometer and blended-

microwave-infrared). Here, the non-near-real time products (i.e., 

GSMaP_S and GSMAP_G) were considered, and both have 0.1° 

and hourly resolutions. The main difference is that GSMaP_G is 

derived from GSMaP_S with daily gauge adjustment. 

The last SPP is Precipitation Estimation from Remotely 

Sensed Information Using Artificial Neural Network (PERSIANN), 

developed by the Center for Hydrometeorology and Remote 

Sensing (CHRS) [22, 46]. Its precipitation estimates are derived 

from IR brightness temperature imagery provided by geostationary 

satellites and artificial neural network (ANN) procedures, with 

MW data used to calibrate IR-based estimates. The finest spatial 

and temporal resolutions given by PERSIANN are 0.25° and 3-

hourly, respectively, spanning from 1 February 2000, which were 

considered here (available at ftp://persiann.eng.uci.edu/ 

CHRSdata/PERSIANN/3hrly). The sensors used and associated 

data incorporated for each of SPPs are listed in Table S1 of 

Supplementary Materials. 

 

3.2 Gauge data 

Three-hourly precipitation data at 105 gauges of the Thai 

Meteorological Department (TMD) were used for the evaluation 

against the SPPs. These selected gauges are officially registered 

by the World Meteorological Organization (WMO) (Supplementary 

Materials, Table S2), and their recordings are internally quality-

checked before public distribution. The gauge data available to 

and used by us span three years (2014-2016), report accumulated 

amount at 01, 04, 07, …, 19, and 22 LT (LT = UTC + 7), and 

have high adequacy (≥99% of total records at every gauge). To 

have a common basis for all gridded SPPs, a grid of a 0.25° 

resolution was adopted as a reference to support the evaluation 

(here, compatible with the TRMM grid). After overlaying the 

gauges onto the grid, the gauges are fully covered by 93 grid cells 

(81 with a single gauge, and 12 with double gauges inside) 

(Figure 1a). At any grid cell with double gauges, its 

representative latitude/longitude values and precipitation were 

assigned as the averages over the two gauges. These 93 grid cells 

are to be hereafter referred to as sites. As seen, they are fairly 

distributed over Thailand, with elevations of 0-400 m msl (above 

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/RAW/0.25deg-3HLY
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/RAW/0.25deg-3HLY
ftp://rainmap@hokusai.eorc.jaxa.jp/reanalysis/v6
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mean sea level) based on the ASTER Global Digital Elevation 

Model (ASTER GDEM) data version 2 (with a product resolution 

of 30 m) [2]. The gauged data used in the evaluation will be 

referred to shortly as GAUGE. The Thiessen-polygon area of 

each site was determined and used as a weight in area-wide 

averaging. 

 

a) 

 
b) 

 
Figure 1. (a) Thailand and 93 gauge sites. Lower or Southern 

Thailand generally refers to the peninsular part while Upper 

Thailand is the remaining part (as seen divided by the horizontal 

dashed line) and (b) Observed monthly area-average 

precipitation based on the 3-year period. The vertical lines denote 

standard deviation. The wet season (May-Oct) accounts for 83% 

of total annual amount. 

 

3.3 Precipitation classes 

To detect precipitation events, four classes were defined, 

which are none (<0.1 mm 3h1 as no rain or trace), light (≥0.1 

mm 3h1 and ≤5 mm 3h1), moderate (>5 mm 3h1 and ≤15 mm 

3h1), and heavy (>15 mm 3h1). Given no standard 3-hourly 

thresholds of the light/moderate and moderate/heavy classes 

officially used in Thailand, simple quantile matching was here 

applied to scale from the TMD’s standard daily thresholds 

(http://www.tmd.go.th/met_dict.php). In doing so, daily data 

were first prepared from 3-hourly data at each gauge site. For 

each of the two thresholds, the probability of the daily threshold 

was computed and then used to inversely determine the 

corresponding 3-hourly precipitation. The threshold was 

approximately assigned as the median of all precipitation values 

from all sites in question. It was found that the probabilities found 

at the light/moderate threshold are between 0.43 and 0.77, with 

the median of 0.68. For the moderate/heavy threshold, the range 

is between 0.75 and 0.97, with the median of 0.92, which is 

reasonably high to represent heavy precipitation. Based on 

GAUGE, the occurrences of the four precipitation classes are 

about 90% (none), 7% (light), 2% (moderate), and 1% (heavy) 

(see Figure S1 of Supplementary Materials). 

 

3.4 SPP data preparation 

The SPPs in question may have different choices of time 

in reporting accumulated precipitation. It was found that 

CMORPH, GPM, GSMaP_G, GSMaP_S, and PERSIANN use 

the concept of “report at the starting time”. For example, 3-hourly 

data reported at 0600 UTC correspond to observation over 0600-

0859 UTC. Both TRMM and TRMM_RT use the middle-time 

convention, e.g., data at 0600 UTC corresponds to observation 

over 0430-0729 UTC. However, GAUGE uses the ending-time 

convention, the SPP data were adjusted or linearly interpolated 

to be consistent with that of GAUGE. The SPPs may also have 

different grid configurations (cell alignment and spacing). They 

were, if necessary, re-gridded to follow the 0.25° reference grid 

(as stated in Section 3.2), using overlapping-area-weighted 

averaging. It is noted that the focal resolution in the current study 

is 0.25°, which is the same as TRMM, TRMM_RT, CMORPH, 

and PERSIANN, but the native spacing of the remaining SPPs 

(i.e., GPM, GSMaP_S, and GSMaP_G) is 0.1°. Thus, the 

assessment of the 0.1° data was included and discussed but in a 

limited fashion. 

 

3.5 Methods 

We begin to describe the SPP evaluation using the 

following three conventional metrics: normalized mean bias 

(NMB), normalized mean error (NME), and Pearson correlation 

(r). The definitions of NMB and NME are as follows: 
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where Oi is the ith observation, Pi is the corresponding ith 

prediction, Ō is the average of observation, and N is the number 

of data pairs. Negative NMB reflects underestimation or dry bias, 

while positive NMB corresponds to overestimation or wet bias. 

The closer NMB or NME to zero, the better performance. 

To assess how well a SPP detects precipitation events, 

three metrics were adopted for use here, which are hit rate (HR), 

false alarm rate (FAR), and false negative rate (FNR). HR is the 

ratio of events when both observation and prediction fall within 

the same specified class. FAR is the ratio of events with 

prediction found in a higher class than observation, and vice versa 

for FNR. According to these definitions, the sum of HR, FAR, 

and FNR equals unity for each class. Each of these metrics has a 

range between 0 and 1, with 1 as the best score for HR but 0 as 

the best score for FAR and FNR. 

To evaluate the diurnal cycle of precipitation, a harmonic 

analysis [1, 10, 55] was performed, which mathematically 

expresses the diurnal cycle as 
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where ӯ is the mean of the series, t is the hour of day (here, 3-

hourly), n is the period of one cycle (equal to 24), k is the order 

of harmonic, Ck is the amplitude of the kth harmonic, and k is the 

phase of the kth harmonic which corresponds to the peak-

amplitude time of the cycle. The above equation can be 

algebraically rearranged into [55, see pages 371-378 therein] 
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with Ak = Ck cos(k), Bk = Ck sin(k), and Ck = Ak
2 + Bk

2. Only the 

wet season was considered because precipitation is concentrated 

during this season, enabling robust harmonic fitting. In the fitting, 

the average diurnal cycle at each site was used, normalized to 

zero mean and unit standard deviation. The normalization helps 

remove bias effects on the amplitude and also facilitates phase 

comparison. Multiple linear regression can be used for fitting 

based on the above equation, giving the values of coefficients A1, 

B1, A2, B2, …, Ak, and Bk and then those of Ck and k. It was found 

that using only the first- and second-order harmonics (shortly, the 

1st and 2nd harmonics, i.e., k  2) combined adequately explains 

the total variance in the original cycle (here, >80% for over three 

quarters of all sites). Our visual inspection generally found a fair-

to-good fit (Figure S5 in Supplementary Materials). In the 

evaluation, two metrics were employed, which are phase bias 

(PB) and phase error (PE). Their formulas are given as follows: 

dir,, )(PB ioip   (5) 

and 

dir
,,PE ioip  , (6) 

where θo,i and θp,i are the observed and predicted ith phases, 

respectively, whose values are assigned as zero at the north axis 

and increase clockwise from the axis, and the subtraction 

operation is directional, as denoted by subscript “dir” in the 

above equations. Both PB and PE have the same unit of decimal 

degree (here, 360° is equivalent to 24 hours). It should be noted 

that the 1st-harmonic phase has only one single value while the 

2nd-harmonic phase has two values (separated by 180°). Before 

computing PB and PE, the values of any pair of observed and 

predicted phases are directionally aligned to be within 180°. 

Negative PB (i.e., negatively shifted) occurs when the predicted 

phase lags behind the observed phase, and vice versa for positive 

bias (i.e., positively shifted). 

Variability is an important aspect of precipitation. In this 

study, precipitation variability is described based on a spectral 

approach. In general, a climatic time series comprises superimposed 

fluctuations at many time scales (from sub-daily or intra-day to 

multi-year scales), driven by micro/meso/synoptic processes, 

disturbances, and large-scale teleconnections. It is of interest to 

determine how total variability in precipitation data is explained 

by different temporal scales. Variance is essentially a statistical 

measure of variability in data. Eskridge et al. (1997) [11] 

developed a variance partitioning technique using Kolmogorov-

Zurbenko (KZ) filters, by which the total variance of original data 

is decomposed into those pertaining to different temporal scales. 

A recent review of the KZ filtering and its applications was given 

by Yang and Zurbenko (2010) [56]. In this study, the spectral 

decomposition using KZ filters were applied to find the 

decomposed variances of each SPP in order to be compared later 

with those of GAUGE, similar to Torsri et al. (2013) [51] where 

those of regional climate model output and those of observational 

data were compared. In general, the KZ technique has relatively 

clean filtering (with suitable filter parameters) and permits 

missing values in the calculation. By definition, KZ(m, p) is a 

long-pass filter that operates as a p-time iterative of a moving 

average with length m [11]: 
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where m is an odd integer (≥3) and p is an integer (≥1). In the 

iteration, y(t) from the first iteration becomes the input for the 

second iteration and so on, until the pth iteration. Here, the 

original time series, denoted by x(t), can be written as 

)(LT)(SY)(SB)(ID)( tttttx  ,  (8) 

where the right-hand-side terms are the decomposed components 

at the intra-day (or sub-daily), sub-seasonal (or synoptic), 

seasonal-to-year, and long-term scales, respectively. To filter out 

fluctuations with cycles of N time steps or less (here, 3 hours per 

step), m and p are required to follow m×p1/2 ≤ N.  

For each dataset, the following filters were sequentially 

applied to obtain the time series of the decomposed components 

individually:  

a) KZ(3, 1) on the original data to remove cycles of 9

hours or less, yielding SB + SY + LT. ID simply equals x – SB – 

SY – LT, 

b) KZ(301, 5) on the result from a) to remove cycles of

2.8 months or less, yielding SY + LT, and 

c) KZ(2001, 3) on the result from b) to remove cycles of

1.2 years or less, yielding LT. 

It is noted that we tried a number of different sets of (m, 

p), examined their corresponding transfer functions [11], and 

finally found the above-specified filters technically applicable. 

The degree of separation among the decomposed components 

was also inspected by comparing the sum of variances from these 

individual components to the total variance of the original data 

(the closer, better the separation).  

The spectral analysis using the KZ filtering is technically 

constrained to the frequency domain. However, whether the 

degree of compatibility of spectral power (or variance) between 

GAUGE and each SPP still holds or varies in a time domain 

should be addressed. In doing so, wavelet coherence was utilized. 

Wavelet is a spectral technique to delineate the oscillations or 

fluctuations of a time series in both time and frequency domains 

simultaneously, and wavelet coherence is a measure of how 

correlated a pair of time series are in terms of oscillation power. 

The wavelet-based techniques have been applied to help interpret 

the information or features of climate variability [13-16, 34]. 

Here, the “biwavelet” library on the R platform [15] was used to 

compute squared wavelet coherence between the GAUGE and 

SPP series. Its value ranges between 0 and 1 (the larger value, the 

higher correlation). In our calculation setup, the standard 

“Morlet” mother wavelet function was employed, as suggested in 

Grinsted et al. (2004) [16]. Any missing values with no more than 

two consecutive records were filled by linear interpolation; 

otherwise, they were zero-padded. 

(4)

(4)
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4. Results and discussion

4.1 Bias, error, and correlation 

In both dry and wet seasons, TRMM_RT, TRMM, and 

GPM show wet bias against GAUGE while the others yield dry 

bias, except for CMORPH and GSMaP_G whose bias turns out 

to change direction from the dry bias in the wet season to the wet 

bias in the dry season (Table 1). Wet bias by TRMM-based SPPs 

were also reported in other studies, e.g., Khan et al. (2014) [28] 

for Pakistan, Qin et al. (2014) [39] for China, Satgé et al. (2016) 

[41] for the Andean Plateau, and Tan et al. (2015) [47] for

Malaysia. In Li et al. (2019) [30], wet bias was also reported in

TRMM (version 7) and GPM (versions 3, 4, and 5) over a

hydrological basin in Thailand, with equal or larger magnitudes

in the latter. Here, GPM (version 6) appears to improve with

lower wet bias in the wet season and both seasons combined. In

both seasons combined, TRMM and GSMaP_G have the least

bias in magnitude (<12%) possibly because both are gauge-adjusted.

Gauge adjustment has the potential to reduce the magnitude of

bias substantially [43, 19]. As for NME, its value ranges 112%-

150% across the SPPs and seasons, being relatively low in

CMORPH and GSMaP_S but relatively high in TRMM_RT.

Comparing between TRMM_RT and TRMM, the latter (as

gauge-adjusted) performs better in all three metrics (NMB, NME,

and r). GSMaP_G (as gauge-adjusted) shows the least bias in

magnitude and highest correlation in magnitude in all cases.

However, the gauge adjustment in GSMaP_G does not offer less

error with respect to its counterpart (GSMaP_S). All SPPs are

fairly correlated to GAUGE (r = 0.3-0.5), with the highest values

found in GSMaP_G and GPM and the lowest values in PERSIANN.

No drastic changes in correlation among the seasons were found.

In view of spatial distribution (Figures S2-S4 in Supplementary

Materials), GPM shows the most apparent seasonal contrast in

NMB, especially in Upper Thailand while the other SPPs have 

less seasonal contrast. For NME, the majority of the sites register 

>100% values in both dry and wet seasons, and none registers

<50%. In both seasons, every SPP has the majority of the sites

registered with fair correlation (0.3-0.6), except for PERSIANN

having low correlation (<0.3) for most sites. Dry-season GSMaP_G

has about one-third of the sites with high correlation (>0.6).

As mentioned previously, each of GPM, GSMaP_S, and 

GSMaP_G has a native finer resolution (0.1°). Whether the above 

evaluation results (based on the 0.25° resolution) would hold with 

the finer resolution is also of interest. We examined this aspect 

and found no systematic and substantial impacts on the three 

metrics for these three SPPs (Table 1). That is, NMB and NME 

change in magnitude within 3% and 6%, respectively, and 

correlation is still maintained at 0.4-0.5. Moreover, we assessed 

the SPP performance with increasing averaging time (Figure 2). 

Bias is theoretically unaffected because the averaging is a linear 

process and only error and correlation are relevant, as suggested 

in Conti et al. (2014) [8]. As seen in every SPP, NME and 

correlation improve relatively fast during the 3-hour to 6-hour 

averaging times and continue to improve but with a slower rate, 

suggesting the 6-hourly time scale as a challenging threshold to 

the sub-daily SPPs and their performance. Notice that, towards 

the 24-hour averaging time, GSMaP_G is the best SPP, which is 

due possibly to daily gauge adjustment. The final aspect of the 

evaluation described in this section is whether the SPP 

performance depends on gauge elevation. Here, four elevation 

intervals (0-10, 10-50, 50-200, and >200 m msl) were defined 

(Figure 1), and their corresponding number of gauge sites are 16, 

31, 32, and 14 sites, respectively. TRMM and GPM do not show 

elevation dependence in both bias and error (Figure 3) whereas 

the other SPPs have mixed or incoherent results. GSMaP_G shows 

a wet-to-dry shift over the first two intervals and a dry-to-wet over

Table 1. Area-average normalized mean bias, and normalized mean error, and correlation found in each SPP. All results are based on 

the reference 0.25° resolution, except for those in the cases of GPM, GSMaP_S, and GSMaP_G where the results based on their native 

0.1° resolutions are additionally shown in parentheses. 

Dataset Quantity Both seasons Wet Dry 

Gauge Mean±SD (mm 3h–1) 0.5±3.1 0.8±3.9 0.2±1.7 

TRMM_RT 

Mean±SD (mm 3h–1) 0.6±2.4 0.9±2.9 0.2±1.4 

NMB (%) 26.4 27.4 21.4 

NME (%) 149.3 150.0 143.5 

r 0.42 0.40 0.40 

TRMM 

Mean±SD (mm 3h–1) 0.5±2.1 0.8±2.6 0.2±1.2 

NMB (%) 9.2 11.4 6.6 

NME (%) 136.1 137.8 129.4 

r 0.43 0.41 0.43 

CMORPH 

Mean±SD (mm 3h–1) 0.4±2.0 0.6±2.4 0.2±1.4 

NMB (%) 14.6 17.2 6.4 

NME (%) 120.0 118.6 127.8 

r 0.43 0.42 0.44 

GPM 

Mean±SD (mm 3h–1) 0.5±2.1 (0.5±2.4) 0.8±2.5 (0.8±2.9) 0.2±1.4 (0.2±1.6) 

NMB (%) 7.5 (8.2) 3.3 (4.2) 43.3 (45.5) 

NME (%) 125.5 (125.6) 122.4 (121.7) 147.7 (153.8) 

r 0.50 (0.49) 0.49 (0.49) 0.49 (0.44) 

GSMaP_S 

Mean±SD (mm 3h–1) 0.4±1.8 (0.4±1.9) 0.6±2.1 (0.6±2.3) 0.2±1.2 (0.2±1.2) 

NMB (%) 18.2 (18.6) 18.1 (18.1) 17.5 (18.5) 

NME (%) 121.2 (117.1) 122.5 (118.4) 111.5 (108.8) 

r 0.41 (0.44) 0.38 (0.42) 0.45 (0.47) 

GSMaP_G 

Mean±SD (mm 3h–1) 0.5±1.4 (0.5±1.5) 0.8±1.7 (0.8±1.8) 0.2±0.8 (0.2±0.8) 

NMB (%) 1.0 (1.2) 0.2 (0.1) 0.3 (0.7) 

NME (%) 130.7 (128.1) 131.7 (128.8) 127.4 (126.2) 

r 0.51 (0.53) 0.49 (0.51) 0.54 (0.55) 

PERSIANN 

Mean±SD (mm 3h–1) 0.4±1.7 0.6±2.0 0.2±1.1 

NMB (%) 13.7 13.9 4.4 

NME (%) 140.2 140.6 139.7 

r 0.30 0.28 0.30 



Journal of Sustainable Energy & Environment 11 (2020) 81-91 

Copyright @ 2020 By Journal of Sustainable Energy and Environment 86 

the last two intervals. Some studies (e.g., [4, 18]) but over larger 

ranges of elevation (e.g., several hundreds to a few thousands of 

meter) reported strong dependence. In our study, the highest site 

is located at just 400 m msl, and nearly all sites are in plains (e.g., 

low-lying, coastal, highland, and mountain-valley), as opposed to 

on mountains or hills, and this may possibly not allow us to 

capture or reveal the influence of elevation clearly, which is a 

limitation of the current study. 

a) 

b) 

c)

Figure 2. Change with averaging time of (a) normalized mean 

bias, (b) normalized mean error, and (c) correlation for both dry 

and wet seasons combined. 

4.2 Precipitation event detection 

Following the four defined classes of precipitation events 

(none, light, moderate, and heavy) for the precipitation event 

detection, it was found that all SPPs commonly predict the 

“none” class well and the “light” class fairly (HR ≥ 0.4) but 

relatively poor for the other two classes (HR ≤ 0.3) (Figure 4). 

The difficulty of detecting heavy-precipitation events was also 

reported in Chokngamwong and Chiu (2008) [7] and Prakash et 

al. (2018) [37]. The overall findings from the current assessment 

are as follows: In view of HR, both GSMaP_G and GPM detect 

the “light” class the best but the “none” class the worst. However, 

GPM still persists to perform relatively well for the two upper 

classes (“moderate” and “heavy”), as opposed to GSMaP_G that 

Figure 3. Change with surface elevation (m msl) of (a) normalized 

mean bias and (b) normalized mean error for both dry and wet 

seasons combined. 

a) 

b) 

c) 

Figure 4. (a) Hit rate, (b) false alarm rate, and (c) false negative 

rate by precipitation class for both dry and wet seasons combined. 

The grey solid squares in (b) and (c) indicate no calculation. 

a) 

b)
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yields relatively poor detection in the “heavy” class. It is known 

that several technical enhancements were made in the GPM 

mission, as compared to the TRMM mission, and a notable one 

is the GPM precipitation radar and sensors having more sensitivity 

to light precipitation [53]. The SPPs generally have low FAR 

(<0.3) in every class but high FNR (>0.6) in the two upper 

classes. TRMM_RT gives false alarm the most often in the “light” 

and “moderate” classes. PERSIANN may be viewed as the worst-

performing, particularly from the viewpoint of HR and FNR. 

4.3 Phase of diurnality 
For the 1st harmonic, every SPP shows only a positive 

phase shift (PB = 2.1-20.4°, equivalent to 0.1-1.4 hours preceding) 

while, for the 2nd harmonic, phase shifts both negatively and 

positively (PB = 10.3° to 20.4°) (Table 2). CMORPH appears to 

perform the best in both 1st-and 2nd-harmonics, followed by TRMM 

and TRMM_RT. GSMaP_S and GPM yield the largest PB and 

PE in the 1st harmonic. Figure 5 illustrates the spatial distribution 

of the 1st- and 2nd-harmonic phases for GAUGE and two examples 

of SPPs (CMORPH and GSMaP_S as well- and poorly-performing, 

respectively) (see Figures S6-S7 in Supplementary Materials for 

all SPPs). It is worth noting from the figures that the 1st-harmonic 

phase of GAUGE varies spatially but tends to fall in the evening  

hours over the most of Upper Thailand but in the afternoon in 

Lower Thailand (Figure 5). Wet-season precipitation in Bangkok 

(the capital) mostly peaks in the late afternoon, evening, and early 

morning, depending on the month, as a result of the delayed effect 

of surface heating by the sun [5]. Maximum precipitation occurs 

in the evening or nighttime at the coastal sites in the eastern part 

of Thailand and some sites near the northeastern border to Laos, 

as similarly reported by Ohsawa et al. (2001) [36] for June-

August precipitation in Thailand. 

Table 2. Area-average phase bias and phase error for the 1st and 
2nd harmonics. Units are decimal degree (360o = 24 hours). 

SPP 

1st Harmonic 2nd Harmonic 

PB 

(deg.) 
PE 

(deg.) 
PB 

(deg.) 
PE 

(deg.) 

TRMM_RT 9.7 25.8 4.6 22.4 

TRMM 9.3 24.3 4.0 20.5 

CMORPH 2.1 17.9 1.7 15.1 

GPM 15.5 23.1 9.7 15.4 

GSMaP_S 20.4 33.0 9.9 28.4 

GSMaP_G 9.3 30.6 10.3 35.0 

PERSIANN 8.1 33.0 20.4 23.6 

a) 1st Harmonic

b) 2nd Harmonic

Figure 5. Phase vectors of wet-season-only precipitation by GAUGE, CMORPH, and GSMaP_S. The single- and double-headed 

arrows correspond to the peak-amplitude times of the 1st and 2nd harmonics, respectively. 
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Figure 6. Variance contribution (relative to total variance) from each temporal component of precipitation in both dry and wet seasons 

combined. 

4.4 Variance partitioning 
A fair-to-good separation (>78% of the total variance) 

was achieved in each of GAUGE and the SPPs (Figure 6). For 

GAUGE, most of its total variance (93.6%) is explained by the 

ID, SB, SY, and LT variances combined (51.2%, 41.0%, 1.3%, 

and 0.1%, respectively). Every SPP under-predicts in the ID 

variance (20-40%) but over-predicts the SB variance by 11-24%. 

Among all SPPs, CMORPH, followed by GSMaP_S, GPM, and 

PERSIANN shows better performance in capturing the 

decomposed variances, relatively close to those given by 

GAUGE. TRMM_RT, TRMM, and GSMaP_G are identified as 

the least performing ones. In addition to the above spectral 

results, we examined the autocorrelation of 3-hourly precipitation 

(Figure 7a). Autocorrelation is a basic property of a stochastic 

process that is tightly associated with how the process evolves 

with time based on its past states [9]. 

From the figure, it decays rapidly with time lag for every 

dataset. CMORPH is shown to yield the shape of the 

autocorrelation closet to that of GAUGE. As seen, GAUGE has 

a decorrelation time (marked by the e-folding or the 1/e value) of 

2.3 hours. For CMORPH, GPM, GSMaP_S and, PERSIANN, the 

decorrelation time is slightly longer (3.6 hours) while the 

remaining SPPs have many prolonged times (4.7-6.6 hours), the 

latter of which may be explained by the influence of larger-scale 

fluctuations (especially, the overestimated variance of the SB 

component). We also further examined zero-time-lag correlation 

but with distance separation (Figure 7b), similarly finding 

CMORPH to be superior among all SPPs, with its decorrelation 

distance of about 80 km, closest to that of GAUGE (about 30 

km). 

4.5 Wavelet coherence 

The results of wavelet coherence over the cycles of <48 

hours are only displayed because the sub-daily scale is of most 

interest (Figure 8). Given the 3-hourly data, results at the cycles 

of <6 hours were necessarily omitted to avoid the effect of 

aliasing [55]. In general, wavelet coherence varies with time with 

seasonal contrast in a pattern. That is, every SPP shows 

pronounced coherence in the dry season due to relatively limited 

precipitation commonly given by all SPPs. Both CMORPH and 

GSMaP_S are shown to be the best, followed by GPM, based on 

coherence averaged over the cycles of 6-12 hours (as sub-daily-

scale oscillations), which are about 0.6 for both seasons and 0.5 

for the wet season alone. For the least-performing SPPs, they are 

TRMM_RT, TRMM, and GSMaP_G. These results are well 

consistent with those previously said in the previous section. 

Notice that, between GSMaP_S and GSMaP_G, the latter is 

superior at the cycles of 24-48 hours due possibly to its daily-

gauge adjustment. 

a) 

b) 

Figure 7. (a) Autocorrelation and (b) correlation with distance 

separation of precipitation in both dry and wet seasons combined. 

In each plot, the e-folding (1/e) is denoted by the horizontal grey 

line. For (b), correlation between each pair of sites was first 

computed and then grouped into 10-km distance bins. After that, 

all correlation results from all pairs were averaged bin-wise, in 

which no Thiessen-polygon-area weights were used. 
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a) b) 

c) d) 

e) f) 

g) 

Figure 8. Squared wavelet coherence (dimensionless) between GAUGE and each SPP. Each color pixel in the above plots corresponds 

to the average over the same pixels pooled from all sites with Thiessen-polygon-area weights. “W” stands for wet season (May-

October). It is noted that Avg6-12 and Avg_W6-12 are the average coherence average values for only cycles of 6-12 hours in both seasons 

combined and wet season, respectively. 

5. Conclusions

A total of seven satellite precipitation products, which are 

TRMM_RT, TRMM, CMORPH, GPM, GSMaP_S, GSMaP_G, 

and PERSIANN, have been evaluated against the 3-hourly gauge 

data in 2014-2016 across Thailand, as the representative tropical 

country in Upper Southeast Asia. The evaluation methods include 

bias, error, correlation, and precipitation event detection, which 

are conventional. The non-conventional methods utilized are 

phase of diurnality, variance partitioning using spectral 

decomposition and wavelet coherence. None of the SPPs were 

found to be universally superior in every aspect. It is possible to 

suggest CMORPH among the SPPs as the best performing based 

on the majority of the methods used. GPM and GSMaP_S are the 

noteworthy products that also perform reasonably, except only 

for lack of compatibility in the phase of diurnality. These three 

products are capable of dynamically capturing precipitation 

fluctuations to a certain degree, as consistently indicated by 

variance partitioning and wavelet coherence as well as time/space 

correlations. GSMaP_G has the true strength in bias, error, and 

correlation but fails to capture the fluctuations. Both GSMaP_G 

and GPM detect the “light” class the best but the “none” class the 

worst but GPM continues to predict relatively well for the 

“moderate” and “heavy” classes. TRMM_RT and PERSIANN 

appear to be the least favored products. The former is associated 

with relatively large bias and error and poorly accounting for the 

fluctuations whereas the latter is inferior in error, correlation, and 

event detection. It was also noted that bias and error do not show 

a strong dependence on elevation but based on the gauges used, 

which are still limited in height.  

It is hoped that the evaluation and findings in this study 

can potentially provide useful information about SPP choices in 

terms of strengths and weaknesses and their applicability for the 

region in question. We nevertheless caution against directly 

extending the findings without further evaluation of other regions. 

Given the limitations and scope of the current study, some 

recommended future studies are the use of sub-daily gauge and 

satellite-based data over a longer-term period, hydrologically 

based evaluation during fast flood events [30], use of an 

independent gauge network (if accessible, especially, the 

inclusion of gauges located on mountains), and incorporation of 

additional statistical concepts, e.g., joint space-time evolution, 

frequency-duration characteristics, and extreme value analysis. 
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